Lead University of the Sciences Inventor
John W. Tomsho, PhD

Unmet Need
Two newly FDA-approved drugs, tavaborole and crisaborole, contain a benzoxaborole functionality and as a result, the benzoxaborole pharmacophore is increasingly being investigated across the pharmaceutical industry.

Due to their sensitivity to certain reactions, chemically synthesizing benzoxaboroles can be challenging. The versatile protecting groups discovered at the University of the Sciences (USciences) and described here can mask this undesired reactivity.

This invention can serve as a useful tool to any medicinal chemist pursuing a benzoxaborole in their drug design studies and for more efficient syntheses of benzoxaborole-containing drug candidates.

Opportunity
Our lab has synthesized zwitterionic benzoxaborole complexes that can be used in mild oxidation reactions, substitution conditions, and mild reductive conditions in good yields compared to the literature. Solubility in organic solvents also improved, which facilitated reactions where the unprotected substrate was not soluble.

Due to synthetic struggles while pursuing benzoxaborole-containing analogs of a natural product, Dr. Tomsho and his colleagues searched the literature to seek potential protecting groups of the benzoxaborole functionality. One 2013 report described benzoxaborole protection, however the stability of this group was very limited.

We have reported the design, synthesis and evaluation of two families of compounds that form divalent, zwitterionic complexes with benzoxaboroles. These compounds efficiently and reversibly protect the benzoxaborole functionality through one or more chemical steps that are incompatible with the unprotected benzoxaborole. The chemical robustness of these protecting groups has been characterized and it was determined that these protecting groups offered improved reaction scope diversity when compared with the previous state of the art.

Unique Attributes
After initial investigation, the USciences team created a rigidified and semi-conjugated system that exhibits enhanced stability to reaction conditions and to common synthetic manipulations (i.e., extractions, flash chromatography).
Clinical Applications
This invention can be a useful synthetic tool for any company/laboratory that is pursuing the synthesis of benzoxaborole-containing targets. Reagents can be commercialized through a chemical supply company making them available for purchase by academic labs and/or companies.

Stage of Development
In laboratory use.

Intellectual Property
Provisional patent in force.

Collaboration Opportunity
Actively seeking licensee for commercialization.

References and Publications

INSTITUTIONAL CONTACT
Jean-Francois "JF" Jasmin PhD
+1 215.596.8512
j.jasmin@usciences.edu

L2C PARTNERS CONTACT
Merle Gilmore
+1 610.662.0940
gilmore@l2cpartners.com